Vyhľadávanie podľa kategórií: cudzie slová, chémia

Zobrazené heslá 1 – 6 z celkového počtu 6 hesiel.

Zobrazujem:

Zoraďujem:

A - Z

absorpcia

absorpcia [lat.] — vstrebávanie, pohlcovanie;

1. ekon. zlúčenie; spôsob fúzie, pri ktorej si právnu subjektivitu ponecháva len absorbujúca spoločnosť a absorbovaná spoločnosť zaniká. Vloženie všetkého majetku, pohľadávok a záväzkov absorbovanej spoločnosti v prospech absorbujúcej spoločnosti;

2. fyz. pohlcovanie žiarenia pri prechode hmotným prostredím (→ absorpcia svetla, → absorpcia zvuku, → absorpcia žiarenia, → absorpcia vlnenia);

3. chem. fyzikálnochemický proces rozpúšťania (pohlcovania) plynnej zložky v kvapaline (príp. v tuhej látke), absorbente. Charakteristickým znakom absorpcie je, že rozpustený plyn sa rozptýli rovnomerne v celom objeme absorbentu na rozdiel od adsorpcie, kde je účinný len povrch adsorbentu.

Pri fyzikálnej absorpcii je rozpustený plyn viazaný na molekuly absorbentu iba slabšími fyzikálnymi väzbami a absorpcia je vratná. Chemická absorpcia je spravidla nevratná, pretože absorbovaný plyn vytvorí v absorbente chem. zlúčeninu (napr. pri absorpcii oxidu uhličitého CO2 vo vodnom roztoku hydroxidu vápenatého Ca(OH)2 vznikne uhličitan vápenatý CaCO3). Absorpcia je exotermický dej, vznikajúce teplo je často potrebné odvádzať, aby sa priblížila v praxi požadovanému izotermickému deju.

Fyzikálna absorpcia plynov v kvapalinách sa riadi Henryho zákonom. Plyn sa absorbuje iba do stavu nasýtenia, keď sa dosiahne termodynamicky rovnovážny stav (koľko častíc sa absorbuje do roztoku, toľko sa z neho uvoľní). Rozpustnosť plynu v kvapaline je približne priamo úmerná jeho tlaku a koncentrácii v kvapaline a spravidla sa zmenšuje s rastúcou teplotou. Rôzne plyny majú v určitom absorbente rôznu rozpustnosť. Napr. oxid uhličitý má vo vode asi 50-krát väčšiu rozpustnosť ako vzduch. V tomto prípade ide čiastočne aj o chemickú reakciu, pri ktorej vzniká kyselina uhličitá. Pre plyny, ktoré nereagujú s rozpúšťadlom, platí princíp superpozície, t. j. rozpúšťajú sa nezávisle od seba a ich rozpustnosť závisí od ich parciálneho tlaku a teploty. Rôzna rozpustnosť plynov v absorbente umožňuje ich delenie v absorbéroch (napr. oddelenie sírovodíka zo zmesi uhľovodíkových plynov absorpciou v etanolamínoch). Niekedy je roztok plynu a absorbentu žiadaným produktom: napr. kyselina chlorovodíková (absorpcia chlorovodíka vo vode), sódovka (absorpcia oxidu uhličitého vo vode).

adícia

adícia [lat.] — pripájanie, pridávanie;

1. chem. chemická reakcia, pri ktorej sa na násobné väzby v molekulách viažu, t. j. adujú, menšie molekuly, pričom dochádza k zníženiu násobnosti väzby (z trojitej vzniká dvojitá až jednoduchá). Podľa mechanizmu reakcie sa adície delia na elektrofilné, nukleofilné a radikálové. Pri elektrofilnej adícii sa reakcia začína naviazaním elektrofilnej častice (najpomalší stupeň reakcie). Napr. adícia chlorovodíka na propén sa začína adíciou vodíkového katiónu H+ viažuceho sa na ten z uhlíkov násobnej väzby, ktorý je viac substituovaný:

Pri nukleofilnej adícii (uplatňuje sa najčastejšie na polárnych väzbách, aké sú v aldehydoch, ketónoch ap.) je mechanizmus opačný: v najpomalšom kroku nastáva adícia nukleofilnej častice na násobnú väzbu (na atóme, kde je v dôsledku polarity väzby nedostatok elektrónov):

Reťazový charakter majú radikálové adície, pri ktorých sa na násobnú väzbu viažu radikály vznikajúce pôsobením ultrafialového žiarenia alebo peroxidových katalyzátorov (dibenzoylperoxid) na činidlo. Podľa typu činidiel sa rozoznávajú halogenácie, hydratácie, hydroformylácie ap. Z priemyselného hľadiska sú dôležité hydrogenácie, pri ktorých sa na násobné väzby aduje vodík. Špeciálnym typom adícií sú polymerizácie. Na výstavbu cyklických a bicyklických zlúčenín sa využívajú cykloadičné reakcie, pri ktorých sa obidve novovznikajúce väzby vytvárajú súčasne;

2. mat. a) cudzojazyčný názov sčitovania; b) generický princíp tvorby prirodzených čísel z čísla 1 postupným a neohraničeným pripočítavaním čísla 1 k číslam, ktoré boli takým spôsobom už utvorené (napr. na základe Peanovej axiomatiky prirodzených čísel).

biokoloidy

biokoloidy [gr.] — disperzné roztoky organických látok, ktoré sú súčasťou živých organizmov, napr. bielkovinové biokoloidy.

kapacita

kapacita [lat.] — schopnosť niečo pojať do seba, niečo obsiahnuť, ako aj miera, objem alebo rozsah tejto schopnosti;

1. antropol. kapacita lebky — objem mozgovej časti lebky (mozgovne) vyjadrený v cm3; údaj poskytujúci informáciu o veľkosti mozgu, využívaný predovšetkým pri štúdiu kostrových pozostatkov vývojového radu človeka. Pri dobre zachovanej lebke sa jej kapacita zisťuje priamo naplnením mozgovne kvapalinou alebo drobnými semenami (zvyčajne semenami horčice) a odmeraním objemu náplne pomocou odmerného valca, najčastejšie však z jednotlivých rozmerov lebky získaných jej meraním alebo z röntgenových alebo tomografických snímok lebky. Kapacita lebky človeka sa počas evolúcie postupne a nepravidelne zväčšovala od živočíšnych predchodcov človeka až po neandertálskeho človeka, u predstaviteľov Homo sapiens sa mierne zmenšila a jej priemerná hodnota u dospelého jedinca v dnešnej populácii dosahuje 1 350 cm3. Určovanie kapacity lebky sa používa na približný odhad inteligencie, resp. duševných schopností hominidov, jej hodnota však pomerne úzko súvisí s veľkosťou, resp. s hmotnosťou tela a čiastočne aj so životnými podmienkami;

2. ekon. → výrobná kapacita;

3. el.tech. kapacita kódu → dĺžka (kódu);

4. fyz. veličina charakterizujúca: a) mieru schopnosti vodiča, sústavy vodičov alebo kondenzátora uchovávať elektrický náboj, → elektrická kapacita; b) mieru schopnosti telesa prijať teplo; → tepelná kapacita;

5. chem. kapacita adsorbentu — miera schopnosti adsorbentu viazať určitú zložku (adsorptív) alebo skupinu zložiek z plynnej alebo z kvapalnej zmesi; rovnovážna veličina, ktorá závisí od vlastností adsorbentu, od stavových a procesných podmienok (teplota, tlak, pH, iónová sila) i od zloženia plynnej alebo kvapalnej zmesi. Pri dostatočne vysokej koncentrácii adsorbovanej látky často dochádza k úplnému nasýteniu povrchu aktívnych centier adsorbentu a dosahuje sa maximálna (saturačná) kapacita adsorbentu. V technickej praxi sa kapacita adsorbentu najčastejšie vyjadruje ako látkové množstvo (alebo hmotnosť) naadsorbovanej látky (adsorbátu) pripadajúce na jednotkovú hmotnosť suchého adsorbentu. Prepočtom na celkovú hmotnosť adsorbentu (resp. jeho objem) v adsorpčnej kolóne (adsorbéri) sa určí kapacita celej náplne. Adsorpcia prebieha v kolóne iba v tzv. adsorpčnej zóne, čo je vrstva adsorbentu medzi tou jeho časťou, v ktorej už došlo k stavu nasýtenia, a miestom, v ktorom sa práve dosiahne fakticky nulová koncentrácia adsorbátu v pretekajúcej zmesi (čelo adsorpčnej zóny). Adsorpčná zóna sa teda na začiatku procesu vytvára pri vstupe do kolóny a postupne sa pohybuje smerom k výstupu. Množstvo zložky adsorbovanej na jednotkovom množstve adsorbentu v momente, keď čelo adsorpčnej zóny dosiahne výstup z kolóny, sa označuje ako dynamická kapacita adsorbentu. V praxi sa táto hodnota často vzťahuje na neskorší moment, keď už koncentrácia adsorptívu vo vytekajúcej zmesi dosiahne určité, ešte prijateľné percento (ako podiel koncentrácie adsorptívu v zmesi na výstupe a jeho začiatočnej koncentrácie pri vstupe do kolóny), teda keď výstup z kolóny dosiahne významnú časť adsorpčnej zóny. Dynamická kapacita adsorbentu nie je výlučne rovnovážnou veličinou, na jej hodnotu vplývajú aj kinetické efekty. Ak pretekanie zmesi pokračuje, celá náplň adsorbéra sa nasýti, adsorpčná zóna zanikne a koncentrácia adsorptívu vo vystupujúcej zmesi dosiahne začiatočnú koncentráciu. Množstvo zložky adsorbovanej na jednotkovom množstve adsorbentu v stave jeho úplného nasýtenia sa označuje ako statická kapacita adsorbentu. Z hľadiska praktického návrhu adsorpčných kolón je kľúčová dynamická kapacita adsorbentu, ktorá zvyčajne tvorí menej ako 80 % hodnoty statickej kapacity;

6. inform. kapacita pamäte — množstvo pamäťových buniek digitálneho zariadenia uchovávajúcich informácie pomocou logických hodnôt 0 a 1 (→ bit). Kapacita pamäte určuje maximálne množstvo údajov, ktoré je možné uložiť do pamäte zariadenia a vyjadruje sa v základných jednotkách bajtoch (angl. byte, slov. slabika, označenie B) alebo v odvodených väčších jednotkách kilo-, mega-, giga-, tera-, peta-, exa-, zetta- alebo yottabajtoch (napr. kapacita pamäte kompaktného disku je 700 MB). Kým v začiatkoch vývoja počítačov obsahoval bajt 6, 7, 8 alebo 9 bitov, takmer všetky súčasné pamäťové zariadenia obsahujú 8-bitové bajty (tzv. oktety, angl. octet). Z technologických príčin sa kapacita počítačových pamätí udáva aj ako násobok mocniny dvoch (napr. 210) a vyjadruje sa pomocou binárnych predpôn kibi-, mebi-, gibi-, tebi-, pebi-, exbi-, zebi-, yobi- alebo zodpovedajúcich skratiek pred značkou bajtu. Spôsob vyjadrenia kapacity pamäte pomocou predpôn sústavy SI a pomocou binárnych predpôn podľa normy IEC 60027 – 2 je uvedený v tabuľke Jednotky kapacity pamäte;

7. lek. kapacita pľúc → dychový objem;

8. molek. biol.klonovacia kapacita;

9. pedol. kapacita pôdy schopnosť pôdy viazať (adsorbovať) alebo pohlcovať (absorbovať) teplo, vzduch, vodu a iné chemické látky. Tepelná kapacita pôdy charakterizuje mieru jej schopnosti prijímať a zadržiavať teplo. Vyjadruje sa v J/m3. Najviac tepla sa spotrebuje na zahriatie kvapalnej, menej na zahriatie tuhej a najmenej na zahriatie plynnej fázy pôdy (→ fáza). Najväčšiu tepelnú kapacitu majú preto zamokrené ílovité a najmenšiu tepelnú kapacitu výsušné piesočnaté pôdy. Vzdušná kapacita pôdy je mierou schopnosti pôdy zadržiavať vo svojich póroch vzduch. Vyjadruje sa v objemových % ako podiel objemu vzduchu v póroch a celkovej pórovitosti pôdy (pomer objemu pórov k celkovému objemu pôdy vyjadrený v percentách). Celková vzdušná kapacita predstavuje obsah vzduchu prítomného v pôde obsahujúcej len hygroskopickú vodu (pôda vysušená na vzduchu s 95 % vlhkosťou). Minimálna vzdušná kapacita predstavuje obsah vzduchu v póroch pôdy po jej nasýtení kapilárnou vodou. Dostatočná prevzdušnenosť pôdy je dôležitá pre rastliny, optimálny obsah vzduchu v pôde by mal byť 20 – 25 % z celkovej pórovitosti, pri väčšine rastlín by nemal klesnúť pod 10 % (pri trávach pod 5 %). Póry nenaplnené vzduchom sú zaplnené vodou. Miera schopnosti prijať a udržať vodu sa označuje ako vodná kapacita pôdy a súvisí s vododržnosťou pôdy. Najčastejšie sa vyjadruje v objemových % ako podiel objemu vody v póroch a celkovej pórovitosti. Pri jej stanovovaní sa môže merať stav, keď sú všetky póry naplnené vodou (→ plná vodná kapacita), alebo sa osobitne berú do úvahy kategórie pôdnej vody (napr. gravitačná, kapilárna, hygroskopická). Niektoré z takto stanovených hodnôt patria medzi hydrolimity (napr. poľná vodná kapacita, koeficient hygroskopickosti). Ak je obsah vody v pôde vyšší než poľná vodná kapacita, pôda už nie je dostatočne prevzdušnená. Na druhej strane aj nižší obsah vody, než je bod vädnutia, je pre rastliny škodlivý. Sorpčná kapacita pôdy vyjadruje schopnosť pôdy viazať chemické látky (najčastejšie vo forme katiónov) v sorpčnom komplexe pôdy. Celková sorpčná kapacita predstavuje maximálne látkové množstvo katiónov, ktoré môžu byť viazané v 1 kg pôdy. Najväčšiu sorpčnú kapacitu má humózna ílovitá, najmenšiu piesočnatá pôda. Viazanie a výmena iónov v pôde majú veľký význam z hľadiska funkcií pôdy, ale najmä pri výžive rastlín;

10. tech. kapacita akumulátora — množstvo elektrického náboja, ktoré je možné nahromadiť v akumulátore, resp. množstvo náboja, ktoré môže akumulátor dodávať istý čas; udáva sa v ampérhodinách (značka Ah). Závisí najmä od materiálu a objemu elektród akumulátora, od spôsobu jeho nabíjania a vybíjania i od teploty. S rastúcim nabíjacím alebo vybíjacím prúdom klesá nielen v dôsledku rastúcich strát na vnútornom odpore článkov, ale aj preto, lebo chemické procesy v akumulátore prebiehajú ohraničenou rýchlosťou. Na objektívne posudzovanie akumulátorov sa používa menovitá kapacita akumulátora vzťahujúca sa na menovitý vybíjací prúd a na časový interval, za ktorý dosiahne akumulátor minimálne napätie, na ktoré je dovolené akumulátor vybiť z nabitého stavu. Menovitá kapacita akumulátora je potom daná súčinom menovitého prúdu (v ampéroch) a doby vybíjania (v hodinách). Menovité hodnoty kapacity akumulátora sú pri rôznych typoch akumulátorov rôzne a zvyčajne ich uvádza výrobca;

11. v prenesenom význame vynikajúci odborník.

Jednotky kapacity pamäte
Predpona SI Binárna predpona
názov značka násobok názov značka násobok
kilobajt kB 103 = 1 000 B kibibajt KiB 210 = 1 024 B
megabajt MB 106 = 1 000 000 B mebibajt MiB 220 = 1 048 576 B
gigabajt GB 109 = 1 000 000 000 B gibibajt GiB 230 = 1 073 741 824 B
terabajt TB 1012 = 1 000 000 000 000 B tebibajt TiB 240 = 1 099 511 627 776 B
petabajt PB 1015 = 1 000 000 000 000 000 B pebibajt PiB 250 = 1 125 899 906 842 624 B
exabajt EB 1018 = 1 000 000 000 000 000 000 B exbibajt EiB 260 = 1 152 921 504 606 846 976 B
zettabajt ZB 1021 = 1 000 000 000 000 000 000 000 B zebibajt ZiB 270 = 1 180 591 620 717 411 303 424 B
yottabajt YB 1024 = 1 000 000 000 000 000 000 000 000 B yobibajt YiB 280 = 1 208 925 819 614 629 174 706 176 B

keto

keto- [gr.] —

1. chem. predpona používaná v minulosti na označenie karbonylovej skupiny –CO– (→ karbonyl) v substitučnom názvosloví ketónov a iných zlúčenín obsahujúcich túto skupinu; v súčasnosti sa používa predpona oxo-;

2. prvá časť názvu skupín chemických zlúčenín obsahujúcich karbonylovú skupinu (napr. ketoaldehydy, ketoestery), aj prvá časť názvu zložených slov vzťahujúcich sa na chemické zlúčeniny obsahujúce karbonylovú skupinu (napr. ketoacidóza).

konfigurácia

konfigurácia [lat.] — priestorové rozmiestnenie (rozloženie) predmetov (napr. konfigurácia planét); zostava, zoskupenie (→ konfigurácia počítača);

1. chem. a) → elektrónová konfigurácia; b) opis štruktúry molekúl, ktorý pri ich rovnakej konštitúcii odlíši také priestorové usporiadania, ktoré sa nemôžu navzájom zmeniť bez prerušenia chemickej väzby. Nezahŕňa rozdiely v priestorovom usporiadaní vznikajúce otáčaním častí molekuly okolo jednoduchých väzieb (→ konformácia). Zlúčeniny s rovnakou konštitúciou, ale s odlišnou konfiguráciou sú stereoizoméry. V minulosti sa konfigurácia viacerých zlúčenín vzťahovala na štandardnú zlúčeninu, ktorej bola len hypoteticky priradená určitá konfigurácia. Napr. E. Fischer koncom 19. stor. zvolil ako štandard pravotočivý glyceraldehyd, ktorému prisúdil usporiadanie ᴅ (pri znázornení Fischerovou projekciou je skupina OH napravo od centrálneho atómu uhlíka). Sledom chemických reakcií z neho pripravil iné zlúčeniny, ktorým potom priradil rovnaké priestorové usporiadanie. Takto určená konfigurácia sa označuje ako relatívna konfigurácia. Exaktne určené, skutočné usporiadanie molekuly sa nazýva absolútna konfigurácia. Ako prvý určil absolútnu konfiguráciu molekuly v roku 1951 holandský chemik Johannes Martin Bijvoet (*1892, †1980), ktorý na zistenie absolútnej konfigurácie vínanu sodno-rubídneho využil metódu röntgenovej difrakčnej analýzy. V súčasnosti sa okrem röntgenovej difrakčnej analýzy používajú na určenie absolútnej konfigurácie aj metódy optickej rotačnej disperzie a kruhového dichroizmu, ako aj špeciálne metódy jadrovej magnetickej rezonancie;

2. mat. konečná množina bodov, priamok a rovín v projektívnom priestore s pevne zvolenými incidenčnými vzťahmi (→ incidencia, význam 2). Rovinná konfigurácia obsahuje len body a priamky s incidenčnými vzťahmi v projektívnej rovine. Príkladom je úplný štvorroh v projektívnej rovine.